Learning Logistic Circuits

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Circuits

4. If f is random (in the sense that a bit is chosen at random to be the output for a particular input), then there is no way to find such an h in less than exponential time, as we would have to sample each possible input. Instead we will look at learning f when it comes from certain special families of functions such as (i) constant depth polysize circuits, and (ii) the set of “small” decision...

متن کامل

Structured Learning via Logistic Regression

A successful approach to structured learning is to write the learning objective as a joint function of linear parameters and inference messages, and iterate between updates to each. This paper observes that if the inference problem is “smoothed” through the addition of entropy terms, for fixed messages, the learning objective reduces to a traditional (non-structured) logistic regression problem...

متن کامل

Active Learning for Logistic Regression

ACTIVE LEARNING FOR LOGISTIC REGRESSION Andrew Ian Schein Supervisor: Lyle H. Ungar Which active learning methods can we expect to yield good performance in learning logistic regression classifiers? Addressing this question is a natural first step in providing robust solutions for active learning across a wide variety of exponential models including maximum entropy, generalized linear, loglinea...

متن کامل

Learning Arithmetic Circuits

Graphical models are usually learned without regard to the cost of doing inference with them. As a result, even if a good model is learned, it may perform poorly at prediction, because it requires approximate inference. We propose an alternative: learning models with a score function that directly penalizes the cost of inference. Specifically, we learn arithmetic circuits with a penalty on the ...

متن کامل

Transfer Learning Based on Logistic Regression

In this paper we address the problem of classification of remote sensing images in the framework of transfer learning with a focus on domain adaptation. The main novel contribution is a method for transductive transfer learning in remote sensing on the basis of logistic regression. Logistic regression is a discriminative probabilistic classifier of low computational complexity, which can deal w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33014277